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1 Introduction

The principal contributions of the Met Office to the Uncertainties in Regional Reanalysis (UERRA)
project, [Unden et al., 2014], are a deterministic atmospheric reanalysis at 12km and a 20 mem-
ber ensemble atmospheric reanalysis at 36km over Europe for the satellite era (1979-2016).
Production started in January 2017 and is expected to complete in January 2018. The develop-
ment of the project is documented in deliverable reports, which are publicly available through
the UERRA website, http://uerra.eu. In D2.1, [Jermey et al., 2015], the reanalysis systems are
documented, together with initial test results and a demonstration of ensemble products. D2.2,
[Mahmood et al., 2016], describes use of observations and other data used as boundary condi-
tions for the reanalyses. Initial diagnostics from the ensemble system are presented in D2.3,
[Jermey et al., 2016], which demonstrates the validity and quality of the ensemble production
data, as well as reporting on trials of the satellite bias correction method, land surface anal-
ysis scheme and ensemble size. The deterministic reanalysis uses a hybrid approach to data
assimilation, exploiting the ensemble information to improve the reanalysis, as documented in
D2.4, [Jermey et al., 2017b]. D2.4 also contains tuning and initial trial results for the deter-
ministic reanalysis system. An assessment of the quality of the ensemble reanalysis is given in
D2.14, [Jermey et al., 2017a], which includes comparison with the 20th century ensemble reanal-
ysis (CERA-20C), [Laloyaux et al., 2016] from the European Centre for Medium Range Weather
Forecasts (ECMWF) and the University of Bonn/Deutscher Wetterdienst ensemble reanalysis
for UERRA, [Bach et al., 2016].

This final report summarises and updates the documentation laid out in the deliverables and
presents evaluation of both ensembles for the entire period, 1979-2016. Documentation of the
reanalysis systems is summarised in section 2. Evaluation results for the deterministic reanalysis
and the ensemble reanalysis are presented in sections 3 and 4, respectively. The impact of
satellite data assimilation on the uncertainty in the ensemble reanalysis is examined in section
5. Finally, archiving information is given in section 6 and a summary is given in section 7.
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Period Deterministic Ensemble
Resolution 0.11◦ ≈ 12km 0.33◦ ≈ 37km
Assimilation Resolution 0.22◦ ≈ 24km 0.66◦ ≈ 75km
Grid size 432 x 432 144 x 144
NW Corner 60.3◦N, −45.4◦E, near Agdleruussakasit, Greenland Same
SW Corner 20.2◦N, −9.5◦E, near Adrar, Mauritania Same
SE Corner 23.2◦N, 36.5◦E, near Shalateen, Egypt Same
NE Corner 66.6◦N, 66.7◦E, near Salekhard, Russia Same
Pole 39.25◦N, 198.0◦E Same
Number of Levels 63 levels to 40km Same

Table 1: Rotated pole grid specification.

2 Documentation

2.1 Scope

The reanalyses are driven by advanced data assimilation techniques which produce an estimate
of the atmospheric state, by drawing a background atmospheric state towards a set of observa-
tions. These reanalyses are produced every six hours, with an atmospheric model forecasting
to the next reanalysis time. This (re)forecast is then the background atmospheric state for the
next reanalysis. The reanalyses cover the EUR-11 domain of the Coordinated Regional climate
Downscaling Experiment (CORDEX, [Jacob et al., 2014]), as shown in figure 1. The grid spec-
ification for both reanalyses is given in table 1.

Both reanalyses cover the period 1979-2016 and are free cycling, but are dependent on ERA-
Interim for lateral boundary conditions (LBCs). Each production stream also requires an initial
background to start the cycling process. This data also comes from ERA-Interim. Each stream
has a month (ensemble) or a week (deterministic) of spin-up time from this initial background
before production data is processed and archived. As an example, the ensemble stream of
1997-1999 is spun-up from ERA-Interim data on 1st December 1996 and begins producing and
archiving data on the 1st January 1997. Since ERA-Interim data is not available prior to 1979,
the exception to this pattern is the first month of 1979, which has not been spun-up and there-
fore will be more heavily influenced by the parent model than subsequent data. This restriction
also means that the first six hours of 1979 are not produced (00UTC on 19790101 to 05UTC on
19790101).

2.2 Observations

The observations assimilated by the reanalyses are mostly supplied by European Centre for
Medium Range Weather Forecasts (ECMWF), [Dee et al., 2011]. Prior to 2003 these observa-
tions come from ECMWF’s reanalysis archives and 2003-2016 from operational archives. These
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Figure 1: Reanalysis domain.

observations include SYNOP stations, ships, buoys, sondes, aircraft and satellite measurements
using advanced infared sounders (AIRS), (Advanced) Television Infrared Observation Satellite
Operational Vertical Sounder ((A)TOVS), scatterometer winds and Infrared Atmospheric Sound-
ing Interferometer (IASI). These are complemented with atmospheric motion vectors (AMV)
from the Met Office and reprocessed global positioning system zenith total delays (GroundGPS),
[Pacione et al., 2017]. Due to a technical error only GroundGPS data from 2014-2015 is assimi-
lated. Further satellite data using GPS radio occulation (GPSRO), Spinning Enhanced Visible
and InfraRed Imager clear sky (SEVIRIclear) and Special Sensor Microwave Imager/Sounder
(SSMIS) was not attempted due to time and resource limitations. A guide to the number of
assimilated observations is given in figure 2. This figure shows that there is a substantial increase
in surface, aircraft and satellite observation volume between 1979 and 2016, but sonde volume
remains relatively steady.

The new Monitoring and Updating Station Lists (MUSLi) system is used to reject and correct
observations based on monthly departure statistics. Corrections are made for surface observa-
tions of pressure and for temperature observations from aircraft and upper air data, [Davie, 2017].

Variational bias correction is applied to the satellite radiances, [Lorenc, 2012, Dee and Uppala, 2009].
This allows for bias corrections to vary with time so as to fit drifts in instrument bias. The
method has been previously well tested for global models and is used here for the first time in
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Figure 2: Guide to the number of each type of observation assimilated by the reanalyses. LHS
all observations, RHS satellite data.

a regional model. High peaking channels are rejected, see [Jermey et al., 2015].

2.3 Boundary Conditions

For LBCs, it was originally intended to use ERA5 (31km horizontal resolution, 137 levels to
80km), [Dee, 2014], since this includes a 10 member ensemble, which would have supplied the
ensemble reanalysis with perturbed boundary conditions. Due to time constraints, it was not
possible to use this dataset and instead, deterministic LBCs were used from ERA-Interim (60km
horizontal resolution, 60 levels to 80km), [Dee et al., 2011].

The upper boundary of the model is a rigid lid at approximately 40km, which is lower than is
typical for a global model, [Brown et al., 2012].

For most of the period, the lower sea boundary is given by version 2 of the Hadley Centre Sea
Ice and Sea Surface Temperature (HadISST2), [Titchner and Rayner, 2014]. This contains a
ten member analysis of sea surface temperatures at 0.25◦ consistent with a single deterministic
analysis of sea ice fraction at 1.0◦. This dataset does not cover 2011-2016, so from Septem-
ber 2011, the Met Office Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA),
[Donlon et al., 2012], is used, reduced to the resolution of HadISST2. For this later period, an
ensemble dataset is produced by adding HadISST2 from a random year to the reduced resolution
OSTIA fields. During both periods, the ten member ensemble of sea boundary data is shared
so that each sea boundary member is used by two reanalysis ensemble members. The lower sea
boundary is detailed in table 2.

The land boundary is provided by the Met Office Land Surface Data Assimilation System
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Period Deterministic Ensemble perturbations
1979-2010 HadISST2 mean HadISST2 perturbations
2010-2016 OSTIA HadISST2 perturbations using random year (1979-2010)

Table 2: Table displaying lower sea boundary for deterministic and ensemble reanalyses.

(SURF), [Candy, 2014], used in a regional context for the first time. As with the atmospheric
analysis, each member of the ensemble performs its own land surface analysis from a different
realisation of in-situ observations.

2.4 Ensemble System

In order for the ensemble of reanalyses to represent uncertainty in the reanalysis system, the
sources of uncertainty are perturbed so that each member receives a different realisation. In
addition to different realisations of the boundaries, different realisations of the model and ob-
servations are also employed. The model is perturbed by adding random analysis increments
as tendencies across the forecast. A random analysis increment may be thought of as a proxy
for model error. Each observation is also perturbed by adding a random amount bounded by
the estimated observation error. This follows a system for generating global ensembles used at
the Met Office for research into model error, [Piccolo and Cullen, 2016]. Each ensemble member
is isolated as there is no re-centring of the ensemble at analysis time. An unperturbed control
member is run separately from the ensemble in order to monitor and update observation black-
lists and calculate satellite bias correction at the ensemble resolution.

The ensemble reanalysis was originally intended to use four-dimensional variational assimilation
(4DVAR), [Rawlins et al., 2007]. However this proved to be prohibitively expensive and so three-
dimensional variational assimilation (3DVAR), [Lorenc et al., 2000] is used instead. 3DVAR suf-
fers from spin-up issues for precipitation so a consequence of this change is that the ensemble
precipitation values are far too large. The spread of the precipitation is, however, still useful for
estimating reanalysis uncertainty, [Jermey et al., 2017a].

Variational assimilation (3DVAR, 4DVAR and hybrid 4DVAR) draws the model close to the
observation data, which in the case of the ensemble is perturbed, by minimising a cost function
which penalises distance from observations, distance from the background and high frequency
behaviour. The weights to the observation and background terms are inverses of the estimates of
the error covariances. It produces an increment to the background which estimates the optimum
state of the atmosphere, given the background and observations across a six hour assimilation
window (T-3 to T+3), taking into account the three-dimensional position of each observation.
As is common practice, the assimilation is carried out at half the horizontal resolution of the
model.
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2.5 Deterministic System

The deterministic reanalysis uses hybrid 4DVAR, [Clayton et al., 2013], to assimilate obser-
vations. As with 3DVAR, this is carried out by minimising a cost function, which penalises
distance from observations, distance from the background and high frequency behaviour. (Hy-
brid) 4DVAR also estimates the optimum state of the atmosphere, given the background and
observations across a six hour assimilation window (T-3 to T+3), taking into account the three-
dimensional position of each observation, but also taking into account the validity of each obser-
vation within the window. The use of the fourth dimension leads to analysis increments which
are more in balance with the model than 3DVAR and therefore it does not suffer from precipi-
tation production which is initially too large.

Traditionally the background error covariance is estimated by a smooth parameterised approx-
imation to climatology tuned by forecast differences over a long period. This is sufficiently
accurate to consistently produce an analysis which is closer to the true atmospheric state than
the background. However, this estimation does not vary from cycle to cycle and regions of ac-
tivity in the background are given the same weight as regions of stability.

Hybrid 4DVAR uses a combination of the climatological background error covariance (used for
the ensemble) and a error covariance derived from the ensemble. This combined covariance cre-
ates a low-noise estimation that is dependent on synoptic pattern. This assimilation method has
been used for background error covariance estimation in operational global forecasting at the
Met Office since 2011, [Clayton et al., 2013]. It is used here for the first time in a regional con-
text. A diagram of this is shown in figure 3 and the hybrid settings are detailed in table 3, which
were determined by a combination of experimental tuning, [Jermey et al., 2017b], and in-house
experience. To avoid spuriously large covariances near the top of the atmosphere, climatology
only is used for this region. A middle region features a linear ramp from hybrid covariances to
climatological covariance. Use of the ensemble data ensures that the background error covariance
is synoptically dependent in the deterministic reanalysis.

2.6 Model

The same model is used by both the ensemble and the deterministic reanalyses. This is the
Unified Model (UM), [Davies et al., 2005], using the dynamical core currently used for opera-
tional forecasting at the Met Office (Even Newer Dynamics for General atmospheric modelling
of the environment, ENDGame, [Wood et al., 2014]). The reanalyses both use six hour cycling,
following the Met Office operational global forecasting system. A (re)forecast is carried out from
a combination of the analysis increment, provided by the data assimilation, and the previous
forecast (background) from T-3 to at least T+9. The reanalysis fields are output at T+0 (the
centre of the six hour assimilation window) and the background for the next cycle between T+3
and T+9. The model is computed over 63 levels using Charney-Phillips staggering between 10m
above orography to the model top - a fixed radius from the centre of the Earth.
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Figure 3: System design. Top shows a single member of the ensemble to demonstrate system
cycling. Bottom shows interaction between ensemble and deterministic system. Only three
members of the ensemble system are shown.
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Item Value
Upper Zone: Climatology covariance weight 100%
Upper Zone: Ensemble covariance weight 0%
Lower Zone: Climatology covariance weight 100%
Lower Zone: Ensemble covariance weight 30%
Start of middle zone 16km
Start of upper zone 21km
Vertical localisation pressure change factor 1.5
Remove scales above 282km
Ensemble size 20 members
Horizontal localisation scale 200km

Table 3: Hybrid settings. The localisation uses the Gaspari-Cohn function,
[Gaspari and Cohn, 1999], to reduce noise in the covariances.

2.7 Suite Design

For each production stream, three suites are run, control, ensemble and deterministic. The
control (a deterministic system at ensemble resolution, not archived) prepares necessary files
for the ensemble including satellite bias correction. The three types of suite use the same
design with different optional tasks. The suites are designed and run using the Met Office Rose
system, [Various, 2017], based on the New Zealand National Institute of Water and Atmospheric
Research’s cylc system, [Oliver, 2017]. This schedules tasks based on predefined dependencies
allowing for automatic production. A summary of the tasks run by the suites is given in tables
4 and 5.

3 Deterministic Results

3.1 Assimilation Statistics

Figure 4 shows some of the assimilation statistics for the deterministic reanalysis for the month
of March from selected years. The left hand column shows the number of assimilated sondes
and the central column shows the number of assimilated temperature observations from surface
stations. This shows that the number of assimilated surface observations increases greatly over
the period of the reanalysis from of the order of 1000 in 1979 to approximately 14000 in 2016,
whereas the number of assimilated sondes remains reasonably constant, of the order of 100 at
00Z and 12Z, with fewer at 06Z and 18Z. The plots show that these counts are mostly stable
over the cycles shown except for a diurnal cycle. Each plot shows a period where there is a
dramatic drop in the number of assimilated surface observations, which is due to a decrease in
available observations in the archive. Some of these are reflected in a decrease in the number of
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Task /Ob /Mem C E D Notes
obstype selector x x x Select observation sources
ra ops process x x x x x Process observations for assimilation
ra ops process anal x x x x x Add assimilation statistics to ODBs
ra create obstore x x x Convert from ODB1 to ObStore
ra ops odb to odb2 x x x x x Convert from ODB1 to ODB2
ra ops bufr odb x x x x Convert from BUFR to ODB1
update biases groundgps x x x Update biases for ground GPS
perturb varobs x x x Perturb observations
check sst x x x Check that SST fields are available
prepare surf x x x Prepare surface boundary fields
ra surf anal sst x x x x Prepare sea boundary
varbc selector x Set satellite biases
ra surf um2jules x x x x Convert from atmospheric to land model
ra surf jules x x x x Surface model
ra surf ekf x x x x Surface analysis
ra var anal x x x x Assimilation
ra var anal screen x x x x Assimilation for surface analysis
ra var bc x x Bias Correction calculation for satellites
perturbation selector x x Select perturbation for model
ra um recon daily x x x x Reconfigure daily fields
ra um fcst x x x Atmospheric model
ra um fcst long x Longer version of atmospheric model
ra um recon ls x x x x Reconfigure fields for assimilation
ra um recon ls screen x x x x Reconfigure fields for surface analysis

Table 4: Principal tasks in production systems. Some tasks are run multiple times for each cycle,
either per observation type (/Ob) or per member (/Mem) or both. Tasks may be used for the
control (C), the ensemble (E) and/or the deterministic (D) reanalysis.
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Task /Ob /Mem C E D Notes
gen ret month x x x Retrieve monthly files from archives
gen ret cycle x Retrieve cycle files from archives
cycle check x x x Check satellite channels
cycle install x x x Change satellite channels
housekeep x x x Clean up general files
housekeep odb2 x x x Clean up ODB2 files
housekeep verodb x x x Clean up ODB1 files
gen ver hk fdb x x x Clean up verification files
gen ver hk ard x x x Clean up verification files
sat stats tidy x Tidy satellite statistics
ra archive x x x x Temporary archive of files
ra archive monthly x x x Temporary archive monthly files
ra archive hybridprep x Archive error modes for hybrid
pack logs x x x Tidy log files
check local horse x x x Tidy processing software and files
ff2grib x x x Convert from fieldsfile to grib2
ppra x x x x Process output files
mars control x x Archive to mars (deterministic)
mars ensemble x Archive to mars (ensemble)
recon em src x Reconfigure for error modes
create error modes x Create error modes for hybrid
suite stats x x x x Monitor assimilation statistics
musli setup x x x Setup observation blacklist monitoring
musli decision x x x Create blacklist decision
musli make x x x Make blacklist
musli monitor x x x Monitor blacklist
ra ver model fdb x x Convert fields to verification format
ra ver obs x x x Verify against observations
engl ver model fdb x x Convert fields to verification format
engl ver obs x x Verify against observations
engl ver anl x Verify against mean (spread)

Table 5: Archiving, housekeeping and monitoring tasks in production systems. Some tasks are
run multiple times for each cycle, either per observation type (/Ob) or per member (/Mem) or
both. Tasks may be used for the control (C), the ensemble (E) and/or the deterministic (D)
reanalysis.
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Figure 4: Assimilation statistics. LHS is the number of assimilated sondes. Central is the
number of assimilated temperature observations from surface stations. RHS is the number of
iterations of VAR to convergence. Top to bottom: March 1979, 1988, 1997, 2006 and 2016.
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iterations required for convergence in the assimilation, shown in the right hand side plots. The
plot for 2016 shows a single cycle with a much lower iteration count than the rest. On this cycle
the convergence failed and the system automatically returned a increment of zero.

Figure 5 shows the RMS difference between pressure observations from surface stations and the
background (O-B) and between these observations and the reanalysis (O-A). They also show O-
A for sonde observations of potential temperature at model level 5. Again these statistics are for
March from selected years of the deterministic reanalysis. This figure shows that the reanalyses
are closer to the observations than the background and that the distances of the background and
reanalyses from the observations generally decreases with time. This shows that the assimilation
process correctly draws the model towards the observations and that increasing the volume of
observations reduces the error in both the background and the reanalyses. The reduction in the
number of assimilated observations towards the end of March 1979 manifests as an increase in
both statistics. The assimilation bust in March 2016 is not noticeable, indicating that it did not
cause a large reduction in the quality of the reanalysis for subsequent cycles. The two peaks seen
in the surface pressure statistics for March 2006 are likely related to the synoptic situation and
are not seen in other assimilation statistics apart from the cost function terms which penalise
high frequency behaviour.

Futher assimilation statistics are presented in D2.4, [Jermey et al., 2017b].

3.2 Reanalysis Quality

It is difficult to assess the reanalysis quality directly due to the lack of availability of indepen-
dent measures of truth. This is because most available high quality measurements of atmospheric
variables are assimilated into the reanalyses. It is common instead to assess the six hour forecast
from the reanalysis against observations (the background). Since errors grow with forecast time
these assessment metrics are an upper bound on the true errors in the reanalysis.

Figure 6 shows the RMSE and mean error of 6h forecasts from the UERRA-MO deterministic
reanalysis and ERA-Interim against 2m temperature observations for March 1979, 1988, 1997,
2006 and 2016. This demonstrates that the quality of the representation of 2m temperature in
UERRA-MO is an improvement on ERA-Interim throughout the reanalysis period. This bene-
fit increases with increasing time/observation volume, see table 6, which details the percentage
change in RMSE from ERA-Interim to UERRA-MO. This suggests that higher resolution as-
similation is of greatest benefit when a dense observation network is available. The quality of
both reanalyses improves with time and both reanalysis have low mean error (bias) throughout,
with UERRA-MO slightly warmer than ERA-Interim.

Figure 7 shows the RMSE and mean error of 6h forecasts from the UERRA-MO deterministic
reanalysis and ERA-Interim against 10m wind vector observations for the same periods as figure
6. As with 2m temperature, both reanalyses improve with time/observation volume. Again,
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Figure 5: Assimilation statistics. LHS is the RMS difference between pressure observations from
surface stations and the background (O-B). Central is the RMS difference of these observations
with the reanalysis (O-A). RHS is the RMS difference of the reanalyses with sonde observations
of potential temperature at model level 5 (approximately 980hPa). Top to bottom: March 1979,
1988, 1997, 2006 and 2016.
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Figure 6: RMSE (LHS) and mean (RHS) difference between 2m temperature observations and
a 6h forecast from the deterministic reanalysis. Top to bottom: March 1979, 1988, 1997, 2006
and 2016.
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Figure 7: RMSE (LHS) and mean (RHS) difference between 10m wind vector observations and
a 6h forecast from the deterministic reanalysis. Top to bottom: March 1979, 1988, 1997, 2006
and 2016.
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Year T2 F10 PMSL T850 T500 F850 F500
1979 -1% -6% 10% -5% -4% -3% 3%
1988 -1% -7% 20% -8% -6% 7% 5%
1997 -9% -10% 4% -20% -5% 2% 2%
2006 -9% -20% 20% -6% -10% 5% 10%
2016 -20% -20% 4% -30% 0% 4% -10%

Table 6: Percentage change in RMSE between ERA-Interim and UERRA-MO. Shows 2m tem-
perature (T2), 10m wind vector (F10), mean sea level pressure (PMSL), temperature at 850hPa
(T850), temperature at 500hPa (T500), wind vector at 850hPa (F850) and wind vector at 500hPa
(F500).

UERRA-MO is an improvement on ERA-Interim throughout the reanalysis period and the im-
provement increases with increasing time/observation volume, see table 6. Both reanalyses show
a small bias, with UERRA-MO consistently less biased than ERA-Interim.

Figure 8 shows the RMSE and mean error of 6h forecasts from the UERRA-MO deterministic
reanalysis and ERA-Interim against mean sea level pressure observations for the same periods as
figure 6. Again the quality of both reanalyses improves with time/observation volume. However,
unlike the other variables, this shows that for pressure UERRA-MO is consistently lower quality
than ERA-Interim. This is because pressure is a large scale variable which is better represented
by a global model than a regional one. In the earlier half of the reanalysis (1979-1997), UERRA-
MO also sees an increase in mean error over ERA-Interim, however in the latter half (2006-2016)
UERRA-MO’s mean error is a decrease over that of ERA-Interim.

Figure 9 shows the RMSE of 6h forecasts from the UERRA-MO deterministic reanalysis and
ERA-Interim against sonde temperature observations for the same periods as figure 6 at 850hPa
and at 500hPa. This figure shows similar results to the assessment closer to the surface, with
UERRA-MO an improvement on ERA-Interim for each period shown. The improvements with
increasing time is not obvious, since the upper air observation network does not increase during
the period as significantly as the surface network.

Figure 10 shows the RMSE of 6h forecasts from the UERRA-MO deterministic reanalysis and
ERA-Interim against sonde wind vector observations for the same periods as figure 6. These
plots show mixed results with eight of the ten periods/heights showing a poorer representation
in UERRA-MO than in ERA-Interim. This may be that the winds at these heights are better
represented in a global model.

16



3.3 Fractions Skill Score 3 DETERMINISTIC RESULTS

Figure 8: RMSE (LHS) and mean (RHS) difference between mean sea level pressure observations
and a 6h forecast from the deterministic reanalysis. Top to bottom: March 1979, 1988, 1997,
2006 and 2016.
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Figure 9: RMSE at 850hPa (LHS) and 500hPa (RHS) difference between temperature sonde
observations and a 6h forecast from the deterministic reanalysis. Top to bottom: March 1979,
1988, 1997, 2006 and 2016.
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Figure 10: RMSE at 850hPa (LHS) and 500hPa (RHS) difference between wind vector sonde
observations and a 6h forecast from the deterministic reanalysis. Top to bottom: March 1979,
1988, 1997, 2006 and 2016.
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Figure 11: Fractions skill score for 24h precipitation in UERRA-MO and ERA-Interim over
Germany, using ECA&D as ‘truth’. Top to bottom, left to right: March 1979, 1988, 1997, 2006
and 2016. The bottom right hand plot summarises the others by showing the fractions skill score
at 77km against year.
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3.3 Fractions Skill Score

The fractions skill score compares the fraction of events in a model with the fraction of events
in gridded observations across neighbourhoods of increasing size, [Roberts and Lean, 2008].

Figure 11 shows fractions skill score of 24h precipitation over Germany from the two reanalyses,
ERA-Interim and UERRA-MO, using gridded observations (0.25◦ ≈ 28km from the European
Climate Assessment & Dataset (ECA&D, [Klein Tank et al., 2002]). This demonstrates that
UERRA-MO improves on representation of precipitation over ERA-Interim, especially for higher
value thresholds.

4 Ensemble Results

4.1 Assimilation Statistics

Figure 12 shows some of the assimilation statistics for the ensemble reanalysis for the month of
March from selected years. As in figure 4, the left hand column shows the number of assimilated
sondes and the central column shows the number of assimilated temperature observations from
surface stations. The ensemble reanalysis assimilates the same observations as the deterministic
reanalysis, so again, the number of assimilated surface observations increases greatly over the
period of the reanalysis from of the order of 1000 in 1979 to approximately 14000 in 2016 and
the number of assimilated sondes remains of the order of 100 at 00Z and 12Z, with fewer at 06Z
and 18Z throughout. The occassional drops in the number of assimilated surface observations,
seen in figure 12, are also repeated here (Note the different vertical axes).

The right hand column of figure 12 shows the number of iterations of VAR to reach convergence.
For this statistic a small amount of variation between members is visible. The decrease in avail-
able surface observations towards the end of March 1979 is also visibly reflected in a decrease in
iterations for each member.

Figure 13 shows the RMS difference between pressure observations from surface stations and
the background (O-B) and between these observations and the reanalysis (O-A) for each ensem-
ble member. Both statistics are larger than their deterministic equivalents, see figure 5. This
degradation is primarily due to the decrease in resolution between the deterministic and ensem-
ble reanalyses and the use of 3DVAR in place of hybrid 4DVAR. Both the magnitude and the
standard deviation of the RMS differences is reduced moving from O-B to O-A. This indicates
that the assimilation draws the reanalyses towards the observations and that the spread of the
ensemble increases with forecast time, i.e. it is smallest at reanalysis times. The impact of the
change in available observations is manifest in these statistics as small variations in magnitude.

Figure 13 also shows the O-A statistics for potential temperature at model level 5 for each en-
semble member. This again demonstrates that there is a small amount of variation between
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Figure 12: Assimilation statistics. LHS is the number of assimilated sondes. Central is the
number of assimilated temperature observations from surface stations. RHS is the number of
iterations of VAR to convergence. Top to bottom: March 1979, 1988, 1997, 2006 and 2016. The
standard deviation in statistics between the members is given in pink, with values for individual
members in other colours. Where only one colour can be seen (green), the difference between
the ensemble members is small.
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Figure 13: Assimilation statistics. LHS and central are the O-B and O-A, respectively, for
SYNOP pressure observations. RHS is the O-A of sonde observations of potential temperature
at model level 5 (approximately 980hPa). Top to bottom: March 1979, 1988, 1997, 2006 and
2016. The standard deviation in statistics between the members is given in pink, with values for
individual members in other colours. Where only one colour can be seen (green), the difference
between the ensemble members is small.
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ensemble members, but that the O-A’s are reasonably stable throughout the periods shown.

4.2 Ensemble Spread

Ensemble spread is intended to represent the uncertainty in the ensemble mean. Figures 14 and
15 show the spread of each ensemble at observation positions for UERRA-MO and CERA-20C.
CERA-20C is a global ten member ensemble reanalysis at 125km and assimilating only surface
pressure, marine winds and ocean profiles, [Laloyaux et al., 2016]. The observations are selected
daily mean temperatures from the ECA&D dataset, [Klein Tank et al., 2002], which are inde-
pendent of the reanalyses. The models feature smoothed orography which may differ greatly from
individual station height. The model temperatures are first corrected to the height of the observa-
tions by applying a lapse rate of 0.0065Km−1, [International Organization for Standardization, 1975].
In each case the spread is inflated using a multiplicative factor to match an assumed observation
representivity error variance of 0.96 as described in table 7, following [Saetra et al., 2004]. Jan-
uary to March (JFM) is shown for 1987, 1997 and 2007 for both ensemble reanalyses, with 2016
also shown for UERRA-MO (since CERA-20C has no data beyond 2010). These figures show
that, after inflating the ensemble to take account of observation representivity error, the magni-
tude of the spread in UERRA-MO is similar to that of its mean RMSE. However, the same is not
true of that of CERA-20C. The Pearson’s rank correlation coefficient (labelled ‘Prcc’), between
the time series of the spread and the RMSE of the mean, is also higher in UERRA-MO than in
CERA-20C. This indicates that the ensemble of UERRA-MO is able to represent uncertainties
in 2m temperature at least as well as CERA-20C, but at much higher resolution.

Figure 14 also shows that with increasing decade/observation volume, the RMSE of the mean,
the spread and the raw spread are all reduced. The correlation of the spread to the ensemble
mean is also reduced. This may indicate that the RMSE of the mean is becoming dominated
by errors in converting from model space to observation space, e.g. height difference and local
effects, or that its variability is becoming dominated by sub-grid scales that are not well captured
by simple inflation.

Figures 14 and 15 also show time series of the RMSE of the ensemble mean and the RMSE of the
control member, which for CERA-20C is represented by a random member of the ensemble. In
each case, the RMSE of the ensemble mean is smaller than that of the control member indicating
that for both ensembles the centre of the ensemble is close to the truth.

Figures 16 and 17 show the spread of each ensemble at observation positions for daily mean
wind speeds. For the top plots of each figure, 10m daily mean wind speed observations are
selected from the ECA&D dataset which are independent of the reanalyses. The model mean
wind speeds are not corrected to take account of height differences or any other local feature.
Again the spread is inflated using a multiplicative factor, as described in table 8. June to Au-
gust (JJA) 2007 is shown for both reanalyses. These figures show that the magnitude of the
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Figure 14: Spread of daily mean 2m temperature in UERRA-MO using ECA&D as ‘truth’. Each
plot shows raw spread, inflated spread, RMSE of mean and RMSE of control. The Pearson’s
rank correlation coefficient (Prcc) between the RMSE of the mean and the ensemble spread is
also shown. Top to bottom, JFM 1987, JFM 1997, JFM 2007 and JFM 2016.
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Figure 15: Spread of daily mean 2m temperature in CERA-20C using ECA&D as ‘truth’. Each
plot shows raw spread, inflated spread, RMSE of mean and RMSE of control. The Pearson’s
rank correlation coefficient (Prcc) between the RMSE of the mean and the ensemble spread is
also shown. Top to bottom, JFM 1987, JFM 1997 and JFM 2007.
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Met Office CERA-20C
Year SMR Spread VR SMR Spread VF
1987 0.55 3.2 0.10 9.4
1997 0.45 3.2 0.096 9.9
2007 0.36 3.6 0.090 12
2016 0.29 4.4 n/a n/a

Table 7: Inflation factors of 2m temperature in UERRA-MO and CERA-20C. In each case
the factor is chosen to match an assumed observation representivity error variance of 0.96.
Multiplying the Square Mean Raw (SMR) Spread by the Variance Factor (VF) gives the inflated
squared spread, which is equivalent to the raw ensemble variance plus observation representivity
error variance.

Figure 16: Spread of UERRA-MO using ECA&D as ‘truth’, JJA 2007. Each plot shows raw
spread, inflated spread, RMSE of mean and RMSE of control. The Pearson’s rank correlation
coefficient (Prcc) between the RMSE of the mean and the ensemble spread is also shown. Top
is 10m daily mean wind speed and bottom is 24h precipitation.
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Figure 17: Spread of CERA-20C using ECA&D as ‘truth’, JJA 2007. Each plot shows raw
spread, inflated spread, RMSE of mean and RMSE of control. The Pearson’s rank correlation
coefficient (Prcc) between the RMSE of the mean and the ensemble spread is also shown. Top
is 10m daily mean wind speed and bottom is 24h precipitation.
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Met Office CERA-20C
Variable S.M.R. Spread Spread V.F S.M.R Spread V.F.
10m daily mean wind speed 0.078 18 0.20 77
24h precipitation 7.6 1.4 1.1 2.3

Table 8: Inflation factors of 10m daily mean wind speed and 24h precipitation in UERRA-
MO and CERA-20C. Multiplying the Square Mean Raw (SMR) Spread by the Variance Factor
(VF) gives the inflated squared spread, which is equivalent to the raw ensemble variance plus
observation representivity error variance.

spread is similar to that of the RMSE of the mean for both ensembles, but that the correlation
between spread and RMSE of the mean is far greater in CERA-20C than in UERRA-MO. The
correlations are lower than those seen for temperature as no local correction is applied, only a
simple interpolation.

The bottom plots of figures 16 and 17 show the spread at positions of 24h precipitation ob-
servations from the ECA&D dataset, which, again, are independent of the reanalyses. These
plots show very large errors in the UERRA-MO ensemble reanalysis. This is due to spuriously
large precipitation caused by the shock of a 3DVAR increment into the model. For 3DVAR
assimilations it is common not to use precipitation accumulations from the first six hours of the
subsequent model forecast, however forecasting beyond the minimum period was prohibitively
expensive for this project. Other variables are not affected. This issue is avoided with 4DVAR,
as in the UERRA-MO deterministic reanalysis, since these increments are better balanced with
the model. In spite of this problem, the spread of the ensemble is very well correlated with the
RMSE of the ensemble mean, as is that of CERA-20C.

4.3 Rank Histograms

Figure 18 shows rank histograms of daily mean 2m temperature for the UERRA-MO ensemble
for January-March 1987, 1997, 2007 and 2016 and for the CERA-20C ensemble for January-
March 1987, 1997 and 2007. These figures suggest that both ensembles are under spread, but
that UERRA-MO improves on CERA-20C, perhaps due to the increase in resolution. Addition-
ally, observed values disproportionately are cooler than the ensemble members in UERRA-MO,
but warmer than the ensemble members in CERA-20C. This bias reduces with increasing decade
for UERRA-MO, but remains large throughout for CERA-20C.

Figure 19 shows rank histogram for daily mean 10m wind speed (top) for the two ensemble
reanalyses, JJA 2007. These suggest that the UERRA-MO members more closely match the
likelihood of the observed values than those of CERA-20C. The CERA-20C histogram suggests
than ensemble members tend to be slower than the observed values. This effect is also present,
but reduced in the UERRA-MO histogram.
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Figure 18: Rank histograms of daily mean 2m temperature in UERRA-MO (lhs) and CERA-
20C (rhs) using ECA&D as ‘truth’. Top to bottom, JFM 1987, JFM 1997, JFM 2007 and JFM
2016. CERA-20C data is not available for 2016. The external rank ratio is the ratio between
the average proportion of the two external ranks to the average proportion of the internal ranks.
Perfect spread would result in a score of 1.0. The internal rank ratio is the ratio between the
higher half of internal ranks with that of the lower half of internal ranks. An unbiased ensemble
would also result in a score of 1.0.
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Figure 19: Rank histograms of 10m daily mean wind speed (top) and 24h precipitation (bottom)
in UERRA-MO (lhs) and CERA-20C (rhs), during JJA 2007 and using ECA&D as ‘truth’. See
figure 18.
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Figure 19 also shows rank historgram for 24h precipitation (bottom) for the two ensemble reanal-
yses, JJA 2007. This again shows spuriously large precipitation in the UERRA-MO ensemble
which means that members are too often wetter than the observation. A similar effect can be
seen to a certain extent in the rank histogram for CERA-20C. In CERA-20C the members tend
to be wetter than the observations on most occasions, but there are also too many occassions
when the observations are wetter than all of the ensemble members.

4.4 Continuous Rank Probability Scores

The continuous rank probability score (CRPS) is a measure of how well the probability density
functions (PDFs) of the ensemble match those of the observations. Time series of CRPS for daily
mean 2m temperature in UERRA-MO and CERA-20C are shown in figures 20 and 21 during
JFM 1987, JFM 1997, JFM 2007 and JFM 2016 (UERRA-MO only) again comparing against
observations from the ECA&D dataset. The scores for UERRA-MO are less than half those of
CERA-20C, indicating that UERRA-MO improves in representing the PDFs of the observations.
UERRA-MO has twice as many ensemble members as CERA-20C. This gives better sampling
of the underlying probability distribution.

Figures 22 and 23 show CRPS time series for daily mean 10m wind speed (top) and 24h pre-
cipitation (bottom) for UERRA-MO and CERA-20C, respectively, during JJA 2007. The plots
for 10m wind speed show a similar result as that of 2m temperature, with UERRA-MO im-
proving on CERA-20C. CRPS for UERRA-MO precipitation are much higher than those for
2m temperature or 10m wind speed due to the spuriously large values of precipitation in the
ensemble. However these scores are still, on average, lower than those of CERA-20C indicating
that the precipitation in the UERRA-MO ensemble still contains useful uncertainty information
even though its absolute values have large errors.

5 Impact of Satellite Data

The impact of Satellite data on the ensemble reanalysis is demonstrated by comparing the re-
analysis with and without Satellite data for a period of three months from three different decades
(March to May in the years 1987, 1997, 2007). Two ensemble reanalyses have been produced for
each period: one with all available satellite data (Sat, i.e. the production reanalysis) and one
without satellite data, i.e. only conventional observations assimilated (NoSat).

As the satellite era has progressed larger volumes of satellite data have become available, as
shown in figure 2. The available satellite data for 1987 consists of AMVs from Satwind and
the TOVS instrument on a National Oceanic and Atmospheric Administration satellite (NOAA-
10). The available satellite data for 1997 consists of Satwind AMVs, scatterometer winds from
Scatwind and TOVS from NOAA-12 and NOAA-14. In 2007 significantly more satellite data
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Figure 20: CRPS time series of daily mean 2m temperature in UERRA-MO using ECA&D as
‘truth’. Top to bottom, JFM 1987, JFM 1997, JFM 2007 and JFM 2016.
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Figure 21: CRPS time series of daily mean 2m temperature in CERA-20C using ECA&D as
‘truth’. Top to bottom, JFM 1987, JFM 1997 and JFM 2007.
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Figure 22: CRPS of UERRA-MO using ECA&D as ‘truth’, JJA 2007. Top is 10m daily mean
wind speed and bottom is 24h precipitation.

Figure 23: CRPS of CERA-20C using ECA&D as ‘truth’, JJA 2007. Top is 10m daily mean
wind speed and bottom is 24h precipitation.
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are available: Satwind AMVs, scatterometer winds from Scatwind, AIRS, and ATOVS from
NOAA-15, NOAA-18 and Metop-A from the European Space Agency.

Figure 24 shows the spread and mean error of the ensemble mean (bias) for 250hPa temperature
for 1987, 1997 and 2007 for both Sat and NoSat. This shows that the uncertainty is reduced
by assimilating satellite data and that this reduction of uncertainty increases with increasing
volumes of data. Likewise the bias in the reanalysis mean is also reduced. As expected an
increase in the volume of satellite data in 2007 is reflected in the improved performance of Sat
over NoSat compared to the earlier periods. This is also seen at other levels (not shown), and
reflects the improvement in temperature sounding achieved when TOVS was replaced by ATOVS.

A similar improvement is seen in the 10m wind vector due to the increase in the number of
AMVs and scatterometer winds across the three decades. Figure 25 shows the 10m winds mean
error of the ensemble mean and spread for each of the three years. Again a reduction in both
uncertainty and bias is seen as a result of assimilating satellite data. The impact is largest when
most satellite data is available.

6 Archiving

Prior to production archiving, a number of processing calculations are carried out on the atmo-
spheric data. This is because some fields required by the project are not directly available from
the model.

• To produce pressure, temperature, wind speed, wind direction, relative humidity, liquid
cloud fraction, frozen cloud fraction and cloud cover on levels which represent height above
orography, a linear interpolation is performed between model levels. Similarly to produce
specific humidity, liquid cloud fraction, frozen cloud fraction and cloud cover on pressure
levels, a cubic interpolation is performed between model levels. These interpolations are
consistent with those carried out within the atmospheric model.

• The 10m wind direction and wind direction on height levels are calculated by taking the
inverse tangent of the true longitudinal component over the true latitudinal component.
The true components are calculated by rotating wind components on equatorial latitude-
longitude grid, following code in the atmospheric model, see [Mancell and Sharp, 2015].

• To produce geopotential, the geopotential height is multiplied by acceleration due to grav-
ity, approximated by 9.82ms−2.

• The square root of the sum of the squares of the horizontal wind components is used to
calculate wind speed on height levels.
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Figure 24: Time series of T+6 forecast data to show the impact of satellite data assimilation.
The left hand column shows ensemble spread and the right hand column shows mean error
compared to sonde temperature observations at 250hPa. The top row shows March - April 1987,
the middle March - April 1997 and the bottom March - April 2007.
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Figure 25: Time series of T+6 forecast data to show the impact of satellite data assimilation.
The left hand column shows ensemble spread and the right hand column shows mean error
compared to 10m wind observations. The top row shows March - April 1987, the middle March
- April 1997 and the bottom March - April 2007.
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• Snow fall is calculated as total precipitation minus large scale rain, minus convective rain.

• Total column water vapour is calculated as the total column wet mass minus the total
column dry mass.

• Albedo is calculated as the relative difference of net downward short wave radiation with
total downward short wave radiation.

• The volumetric soil moisture is calculated by dividing soil moisture by depth and converting
from mm into m.

The UERRA-MO reanalyses are stored in ECMWF’s MARS archive, [Maass, 2017], under
class=ur, expver=prod, origin=egrr. The ensemble reanalysis can be selected via stream=enda
and the deterministic reanalysis via stream=oper. For the ensemble reanalysis, (re)analyses are
available every six hours - 00UTC, 06UTC, 12UTC and 18UTC, daily, and (re)forecasts at T+1h
to T+6h (hourly intervals) from each of these. The deterministic reanalysis is similar, but ad-
ditionally features (re)forecasts at T+9h to T+30h (three hourly intervals) from 00UTC and
12UTC, daily.

The fields stored in the archive are detailed in appendix A. Model level fields are available at
(re)analysis times, accumulated and maximum/minimum fields are avaiable at (re)forecast times
and all other fields are available at both (re)analysis times and (re)forecast times.

7 Summary

The UERRA-MO reanalyses cover 1979-2016 over Europe and the Mediterranean. These include
a lower resolution (36km) 20 member ensemble reanalysis, driven by an ensemble of 3DVAR as-
similations, and a higher resolution (12km) deterministic reanalysis, driven by hybrid 4DVAR
assimilations. The reanalyses assimilate a wide range of conventional and satellite data and
a wide range of consistent atmospheric variables is produced from the surface to a height of
approximately 40km.

Both reanalyses make use of technical innovations. The ensemble uses a random draw of analysis
increments to represent model error. The deterministic reanalysis uses a hybrid 4DVAR which
uses ensemble information to estimate the background error covariances. Both are used for the
first time in a regional context.

The parent model for the UERRA-MO reanalyses is ERA-Interim. The deterministic reanalysis
shows an improvement of representation of most atmospheric variables over ERA-Interim for
this region. This improvement increases with observation volume, indicating that the higher res-
olution hybrid 4DVAR assimilation system makes better use of a dense network. As expected,
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larger scale variables are better represented in the global reanalysis.

Due to cost limitations of running a 40 year ensemble reanalysis, 3DVAR instead of 4DVAR
is used to calculate the reanalyses. This restriction has lead to spuriously large precipitation
in the initial hours of the (re)forecast. With 3DVAR it is usual to allow a period of spin-up
before taking production assimilations. This was not done for UERRA-MO, since extending
the (re)forecast period would have increased the cost. Although the subsequent magnitudes of
precipitation in the ensemble reanalysis are very large, the ensemble is still able to capture the
PDFs of observed values with a similar accuracy to CERA-20C, indicating that there is useful
uncertainty information in these fields.

For other fields, the ensemble reanalysis members have realistic representation and are able to
capture uncertainties well, demonstrating some improvement on CERA-20C for capturing the
uncertainty in the ensemble mean with its spread.

Satellite data has a beneficial impact on the ensemble reanalysis, with later periods where more
data is available reaping greater benefits. The effect of the increased volume of satellite data
can be clearly seen. The greatest improvement due to satellite data between 1987 and 2007 is
seen in the temperature and wind speed, especially in the mid and upper troposphere. This
would seem to reflect benefits particularly from the satellite sounding instruments and AMVs.
For 10m wind, the verifying observations are mostly over land, while the scatterometer data is
from over the oceans and so the impact is harder to measure.

These reanalyses provide the community with hourly data across a wide range of atmospheric
variables for 1979-2016. High resolution fields are available from the deterministic reanalysis.
The lower resolution ensemble reanalysis provides users with twenty realisations of the entire
period whose spread is a useful measure of uncertainty in the mean.
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A Catalogue

Available land fields include orography, land-sea mask, surface roughness, snow depth water
equivalent, volumetric soil moisture and soil temperature. Volumetric soil moisture and soil
temperature are available at four soil levels at depths of 0.1m, 0.35m, 1.0m and 3.0m.
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Variable Surface/Column Near Surface H P M
Pressure x MSL x x
Geopotential x
Temperature x 2m x x x
Temperature (Max/Min) 2m
Wind components (U/V) x x
Wind direction 10m x
Wind gust 10m
Wind speed 10m x
Relative humidity 2m x x
Specific cloud ice water content x x x
Specific cloud liquid water content x x x
Specific humidity x
Evaporation x
Cloud x High/Med./Low x x x
Snow fall x
Total Precipitation x
Total Column Integrated Water Vapour x

Table 9: Atmospheric fields available in the catalogue for both ensemble and deterministic
systems. Available height levels (H) are 15m, 30m, 50m, 75m, 100m, 150m, 200m, 250m, 300m,
400m and 500m. Available pressure levels (P) are 1000hPa, 975hPa, 950hPa, 925hPa, 900hPa,
875hPa, 850hPa, 825hPa, 800hPa, 750hPa, 700hPa, 600hPa, 500hPa, 400hPa, 300hPa, 250hPa
200hPa, 150hPa, 100hPa, 70hPa, 50hPa, 30hPa, 20hPa and 10hPa. Model level fields (M, 1-63)
are only available at analysis times, all other fields are also available at hourly intervals to a
forecast time of 6h. Twice per day (00Z and 12Z) forecast fields from the deterministic reanalysis
are available to a forecast time of 27h.

Type Upwards Downwards Net Direct
LW x x
SW x x x
LW clear sky x
SW clear sky x x
Albedo x
Latent x
Sensible x

Table 10: Radiation flux fields available in the catalogue for both ensemble and deterministic
systems. Both long wave/thermal (LW) and short wave/solar (SW) radiation are featured.
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