

Context

UERRA project => surface reanalysis for a 50 years period over Europe Issue for climatological use: Evolution of the observation network density along a reanalysis period.

Exemple over France:

Number of stations

Context

Impact on surface reanalysis:

Exemple of SAFRAN reanalysis (1958-present) over France – comparison to homogenized series

- INDIC30: index build on 30 stations REF: index build on SAFRAN results
- => temporal heterogeneities for REF experiment

Purpose

- Add pseudo hourly t2m observations for stations with extrem temperatures data

- How it impacts temperature reanalysis?

Plan

- 1- Methods to deduce hourly temperatures
- 2- Impact on reanalysis systems
- 3- Impact on a 50-year reanalysis

Methods to deduce hourly temperatures

Astro method (D.C Reicosky, L.J Winkelman, J.M Baker and D.G Baker (1988))

- Extreme temperature + metadata (sunrise, sunset times)
- Split the diurnal temperature evolution in three parts
- Advantage: Only need extreme temperature + metadata at the observation point
- Inconvenient: Poor quality for « non classic » day

Methods to deduce hourly temperatures

Alpha method

$$\rightarrow T(h) = Tmin + \alpha(h)(Tmax - Tmin)$$

- compute alpha coefficient for station with hourly observation
- deduce alpha coefficient for station whitout hourly observation:
 - Mean of alpha coefficient from N neighbors with
 - Maximum distance = 100km
 - Difference of altitude < 200m

- Use the formula => T(h)
- Experiments:
- 1 to 10 neighbors + All Neighbors
- Inconvenient: Need hourly observations in the neighborhood
- Advantage: OK for « non classic » day

Methods to deduce hourly temperatures

Comparison of the methods: Pseudo observations .vs. Real observations

Period Aug.2009 – Jul.2010 every 6 hours (Aug.1978 – Jul.1979 not shown here)

- Best results for Alpha methods - No elevation dependancy (not shown here)

=> Methods kept: Astro/AlphaAll/Alpha5

- 2 systems used: SAFRAN; MESCAN
- Domain: France
- Experiments with only pseudo observations from Astro, AlphaAll and Alpha5 methods replacing real observations
- Common Period: Oct.2009-Jun.2010

50° 42°

MESCAN grid 5.5km

- Reprojection on the observation's location (1555 stations)

PSEUDO-OBS .vs. OBS	BIAS	RMSE
ASTRO	-0.09	1.73
ALPHAALL	0	0.90
ALPHA5	0	0.85

- Low bias values for MESCAN and SAFRAN
- AlphaAll and Alpha5 better than Astro
- SAFRAN errors ~ MESCAN errors
- Erros using Alpha
All/Alpha
5 \sim Errors using Real Obs

MESCAN	BIAS	RMSE
using ASTRO	0.01	1.96
Using ALPHAALL	0.09	1.30
Using ALPHA5	0.09	1.26
Using Real Obs	0.09	1.12
Guess	-0.72	2.09

SAFRAN	BIAS	RMSE
using ASTRO	-0.1	1.85
using ALPHAALL	-0.06	1.15
Using ALPHA5	-0.05	1.06
Using Real Obs	0	0.93

- Consistant results with pseudo-observation error using SAFRAN (not shown here) or MESCAN
- Error's statistics for Astro seems to be monthly dependant
- To use in reanalysis system, set up $\sigma_{_{0}}$ for pseudo-observations :
 - $\sigma_{\text{o pseudo-obs}} > \sigma_{\text{o real observation}}$

12

• $\sigma_{o \text{ Astro}}$ monthly dependent

Impact on a 50-year reanalysis

- Using SAFRAN over France (1958 to 2010)
- Real observations + ALPHA5 pseudo observations (without specific settings for errros' statistics)

Real observations available 01/01/1960

Impact on a 50-year reanalysis

- Small reduction temporal heterogeneities adding ALPHA5 pseudo-observations
 Indic30's values still better

Impact on a 50-year reanalysis - Perspectives

Red: observations + pseudo-observations ALPHA5 used Black: extrem temperatures without

Black: extrem temperatures without pseudo-observation deduced (less than 5 neighbors <100km or elevation criterion)

=> Increase data's spatial heterogeneities

Impact on a 50-year reanalysis - Perspectives

Red: observations + pseudo-observations ALPHA1 used

Black: extrem temperatures without pseudo-observation deduced (less than 1 neighbors <100km or elevation criterion)

=> Spatial repartition is better

Conclusions

- Two methods to deduce hourly temperatures :
 - Alpha method better than Astro method
 - Astro method needs a few data
 - Alpha method probably not suitable for very sparse network (or use criteria more permissive)

- Impacts on SAFRAN or MESCAN are similar

Perspectives

- Homogeneities with ALPHA1 simulation?
- Try to apply this method over Europe :
 - which data are available ?
 - is the Alpha method suitable ?
- Set up σ_o in MESCAN for pseudo-observation for a potential use

